Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

نویسندگان

  • S. B. Damelin
  • H. S. Jung
چکیده

For a general class of exponential weights on the line and on (−1, 1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near ±∞ (Freud weights), even weights of faster than smooth polynomial decay near ±∞ (Erdős weights) and even weights which vanish strongly near ±1, for example Pollaczek type weights. 1991 AMS(MOS) Classification: 41A10, 42C05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrature Sums and Lagrange Interpolation for General Exponential Weights

where > 0. Once the theory had been developed in its entirety, it became clear that one could simultaneously treat not only weights like those above, but also not necessarily even weights on a general real interval. See [3], [12], [16] for various perspectives on this type of potential theory and its applications. One important application is to Lagrange interpolation. Mean convergence of Lagra...

متن کامل

Pointwise Simultaneous Convergence of Extended Lagrange Interpolation with Additional Knots

In numerical analysis it is important to construct interpolating polynomials approximating a given function and its derivatives simultaneously. The authors define some new good interpolating matrices with "many" nodes close to the endpoints of the interval and also give error estimates.

متن کامل

Mean convergence of Lagrange interpolation for Freud’s weights with application to product integration rules

The connection between convergence of product integration rules and mean convergence of Lagrange interpolation in L, (1 <p < 00) has been thoroughly analysed by Sloan and Smith [37]. Motivated by this connection, we investigate mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials associated with Freud weights on R. Our results apply to the weights exp(-x”/2), m = 2,...

متن کامل

On Converse Marcinkiewicz-zygmund Inequalities

We obtain converse Marcinkiewicz-Zygmund inequalities such as k P kLp[ 1;1] C 0@ n X j=1 j jP (tj)j 1A1=p for polynomials P of degree n 1, under general conditions on the points ftjgj=1 and on the function . The weights f jgj=1 are appropriately chosen. We illustrate the results by applying them to extended Lagrange interpolation for exponential weights on [ 1; 1].

متن کامل

Vector-valued Lp-convergence of orthogonal Lagrange Interpolation

Vector-valued L p-convergence of orthogonal series and Lagrange interpolation. Abstract We give necessary and sufficient conditions for interpolation inequalities of the type considered by Marcinkiewicz and Zygmund to be true in the case of Banach space-valued polynomials and Jacobi weights and nodes. We also study the vector-valued expansion problem of L p-functions in terms of Jacobi polynomi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004